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A B S T R A C T   

The main purpose of this paper was to develop a deep-learning method for the diagnosis of different chronic 
middle ear diseases, including middle ear cholesteatoma and chronic suppurative otitis media, based on 
computed tomography (CT) images of the middle ear. The origin of the dataset was the CT scans of 499 patients, 
which included both ears and selected by specialized otologists. The final dataset was constructed from 973 ears, 
which labeled by a professional otolaryngologist and classified into 3 conditions: MEC, CSOM and normal. The 
diagnostic framework, called the “Middle Ear Structure Identification Classifier”(MESIC), was consisted of two 
deep-learning networks with dissimilar functions: a “region of interest” area search network for extracting the 
special image of the middle ear structure and a classification network for finishing the diagnosis. The area under 
the curve (AUC), which means receiver operating characteristic curve (ROC), reflects the robustness of the al-
gorithm by comparing its sorting effectiveness. According to simulation experiments, we chose Visual Geometry 
Group 16 (VGG-16) as the model’s backbone. In our framework, the ROI search part exhibited an AUC of 0.99 on 
the right and 0.98 on the left. The classification part exhibited an average AUC of 0.96 for both sides based on 
VGG-16. The average precision (90.1%), recall (85.4%) and F1-score (87.2%) show the effectiveness of frame-
work. This paper presents a deep-learning framework to automatically diagnose cholesteatoma and CSOM. The 
results show that MESIC can effectively and quickly classify these two common diseases through CT images, 
which can ameliorate the pressure of professional doctors and the practical problems of the lack of professional 
doctors in rural areas.   

1. Introduction 

Chronic middle ear diseases, which describe some common problems 
with the middle ear, play important roles in daily otorhinolaryngology 
practice due to their high incidence. This kind of disease represent a 
major cause of hearing loss, especially in developing countries (Hallberg 
et al., 2008; Bächinger et al., 2021). Surgery should be performed in 
some cases for the purpose of removing the lesions and infection to 
achieve an infection-free and dry ear (Shohet et al., 2002). Chronic 

suppurative otitis media (CSOM) is characterized by persistent inflam-
mation of the ME or mastoid cavity (Acuin et al., 2004). Middle ear 
cholesteatoma (MEC) refers to uncontrolled growth of squamous kera-
tinized epithelium in the ME, usually located in the tympanic cavity 
and/or tympanic sinus, mastoid cavity, or connective tissue below the 
epithelium (Nevoux et al., 2010; Rutkowska et al., 2017). The European 
Academy of Otology and Neurotology, in collaboration with the Japa-
nese Otological Society (EAONO/JOS), produced a joint consensus 
document outlining the definition, classification and staging of 

Abbreviations: CNNs, Convolutional Neural Networks; CT, Computed Tomography; MEC, Middle Ear Cholesteatoma; CSOM, Chronic Suppurative Otitis Media; 
ROC, Receiver Operating characteristic Curve; AUC, Area Under the Curve. 

* Corresponding authors. 
E-mail addresses: entsj@csu.edu.cn (J. Song), suricsu@csu.edu.cn (R. Su), houmuzhou@sina.com (M. Hou), qimin05@csu.edu.cn (M. Qi), zhang.jianglin@ 

szhospital.com (J. Zhang).   
1 Zheng Wang and Jian Song contributed equally to this work. 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

https://doi.org/10.1016/j.eswa.2022.116519 
Received 6 November 2021; Received in revised form 14 December 2021; Accepted 7 January 2022   

mailto:entsj@csu.edu.cn
mailto:suricsu@csu.edu.cn
mailto:houmuzhou@sina.com
mailto:qimin05@csu.edu.cn
mailto:zhang.jianglin@szhospital.com
mailto:zhang.jianglin@szhospital.com
www.sciencedirect.com/science/journal/09574174
https://www.elsevier.com/locate/eswa
https://doi.org/10.1016/j.eswa.2022.116519
https://doi.org/10.1016/j.eswa.2022.116519
https://doi.org/10.1016/j.eswa.2022.116519
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2022.116519&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Expert Systems With Applications 194 (2022) 116519

2

cholesteatoma (Castle et al., 2018). The differences in etiologies and 
lesion manifestations and treatments between these two diseases make 
diagnosis very important (Lustig et al., 2018). 

Previous studies have demonstrated that high-resolution computed 
tomography (CT) of the temporal bone is currently an accurate diag-
nostic imaging method for cases of Chronic middle ear diseases because 
it clearly shows the middle ear structure and exhibits sensitivity in 
detecting the characteristic findings of middle ear lesions, including the 
extent and complications (Kusak et al., 2018). Generally, the hallmarks 
of CT imaging of CSOM and MEC are soft tissue mass-like opacities in the 
middle ear cavity and mastoid antrum. Association with smooth bony 
erosion of the ossicles and expansion of adjacent structures are the lesion 
characteristics of MEC (Molteni et al., 2019; Gaurano et al., 2004). 

Artificial intelligence methods have made many contributions to the 
diagnosis of other diseases and the use of medical images, especially in 
the intelligent analysis of pulmonary medical images. An outbreak 
within the Champions League in 2020 resulted in numerous researchers 
using the method of artificial intelligence in different medical imaging 
applications as a method of rapid diagnosis (Tsiknakis et al., 2020; 
Apostolopoulos et al., 2020; Wang et al., 2020; Mei et al., 2020; Kanavati 
et al., 2020; Tang et al., 2020). Automatic analysis of medical images 
obtained from other parts of the body has also proven feasible (Younis 
et al., 2019; Wang et al., 2019; Fukae et al., 2020; Wang et al., 2021). 

With the rapid development of deep learning, it is feasible to apply 
computer vision processing and recognition technology to medical 
image-related fields. This approach can greatly reduce the human cost 
and reduce the human error caused by repetition, fatigue or differences 
in knowledge to improve the general diagnosis rate. The purpose of this 
paper was to construct an automatic diagnosis framework of chronic ME 
disease by means of a convolutional neural network to provide doctors 
with an unbiased diagnosis reference before diagnosis. 

This paper’s primary contributions are as follows:  

• We provide a new automatic detection direction for the detection of 
cholesteatoma and CSOM in Ear, Nose and Throat departments. 
Compared with ordinary endoscopic images, CT images can better 
reflect the details of the inner structure of the ME, and the classifi-
cation effect is more obvious for these two diseases.  

• To solve the problem of data imbalance caused by a small number of 
cholesteatoma cases in trainning, we decided to use image inversion 
to enhance the training samples of the classification network by 
observing the data characteristics.  

• The process of our design is fully automatic. We only need to input 
the brain CT scan results of the corresponding patients to determine 
the patient’s binaural disease results.  

• We use a convolutional neural network to classify the CT images that 
have extracted the region of interest (ROI) efficiently. 

This work could reduce the burden on doctors, and provide a feasible 
plan for intelligent diagnosis in the future. 

2. Literature reviews 

In today’s hospitals, otolaryngologists usually obtain a comprehen-
sive understanding of the structure of the ME through endoscopy and CT 
images and make a treatment plan based on the diagnosis. Some re-
searchers have demonstrated the effectiveness of CT and diffusion- 
weighted magnetic resonance imaging in the detection of choles-
teatoma and have shown that fusion CT and diffusion-weighted mag-
netic resonance imaging (CT-DWMRI) is superior to either diagnostic 
method alone in elucidating the location and bone relationship in 
different cases of MEC, making it a valuable surgical planning tool (Dutt 
et al., 2019). Based on CT images, CNNs have also been proven effective 
in judging otitis media and cholesteatoma (Wang & Li et al., 2019). 

There have been many research achievements in the application of 
CNNs in otolaryngological medical image processing. Classification of 

tympanum perforations of different sizes using migration learning and 
Inception-V3 has been successfully implemented for this task (Habib 
et al., 2020). Using a large database, (Cha et al., 2019; Khan et al., 2020) 
the tympanic membrane and external auditory canal characteristics 
were divided into 6 categories covering most ear diseases with good, 
accurate values. Some researchers have realized the automatic seg-
mentation of the cochlea and vestibule, calculated the ratio of hydrolytic 
endolymph, and automatically realized the diagnosis of Meniere’s dis-
ease (Cho et al., 2020; Viscaíno et al., 2020). 

Otosclerosis is a multifactorial bone disorder that affects the otic 
capsule with complex etiology.Pathologically, it is due to the primary 
localized bone resorption of the bone labyrinth, which is replaced by 
spongy bone hyperplasia with abundant blood vessels (Quesnel et al., 
2018). Fujima et al. firstly used a variety of deep learning methods to 
analyze the temporal bone CT of patients with otosclerosis. Compared 
with radiologists, the analysis using GoogLeNet and ResNet proved the 
non-inferiority of deep learning in the diagnosis of otosclerosis (Fujima 
et al., 2019). Tan et al. used Logical Neural Network (LNN) to analyze 
otosclerosis images, which effectively reduced the misdiagnosis of 
fenestral otosclerosis (Tan et al., 2021). 

Besides, the segmentation and positioning of related anatomical 
structures through deep learning is helpful for clinicians to further un-
derstand and learn the adjacent relationship between anatomical 
structures, select treatment methods and plan surgical routes (Yao et al., 
2021). At present, deep learning can also be used for fine segmentation 
and localization of temporal bone structure through imaging, as well as 
feature extraction and differentiation of different lesions (Nikan et al., 
2021; Li et al., 2020; Vaidyanathan et al., 2021). 

3. Materials and methods 

In this section, we describe the data sources, data processing, and the 
overall structure and details of the model. 

3.1. Dataset and data preprocessing 

This study was approved by the medical research and ethics com-
mittee of Xiangya Hospital, Central South University. The data were 
collected from 573 patients who underwent middle ear surgery at the 
Department of Otorhinolaryngology, Xiangya Hospital, from January 
2018 to October 2020. Medical records were then reviewed to exclude 
any patient diagnosed with congenital malformation or any post-
operative situation, as well as any patient missing a temporal bone CT 
scan. 

According to the clinical diagnostic criteria for otitis media (Listed 
1994) and a review of medical history records, preoperative examina-
tion findings (pure tone audiometry, temporal bone CT, ear endoscopy, 
etc.), intraoperative findings and postoperative pathological findings, 
three experienced otolaryngologists divided these operated ears into 
two groups: the CSOM group (only for resting phase) and the MEC 
group. In a few cases where MEC was present in combination with 
CSOM, the diagnosis of MEC was prioritized. For normal ears, the label 
was assigned according to the absence of ear discharge, hearing loss, or 
signs of inflammation on the imaging examination. 

The composition of the dataset is shown in Table 1. In our dataset, 
the age range of patients was 5–72 years, with a mean ± SD of 38.75 ±
14.38 years. There were 198 (40%) men and 301 (60%) women. All 

Table 1 
Illustration of dataset.   

Right Left Total 

MEC 62 46 108 
CSOM 308 314 622 
Normal 129 139 268 
Total 499 499 998  

Z. Wang et al.                                                                                                                                                                                                                                   
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patients were admitted to the hospital and underwent surgery during the 
hospitalization period, and had no other diseases such as granulation 
seed, secretory otitis media, or inner ear malformation. 

To achieve a better training effect, we carried out systematic manual 
annotation of the original data under the guidance of cooperative pro-
fessionals. We chose to make a cover for the ME structure and crop the 
ME structure with a 100 × 100 pixel box, in accordance with region of 
interest (ROI) labeling. This approach helped us train the first network. 
Fig. 1 presents an example regarding data preprocessing. 

In the dataset, due to the small number of MEC instances, a data 
imbalance phenomenon was produced. To reduce the impact of data 
imbalance, we reused the MEC data. In the ME data images, the left and 
right sides are mainly distinguished by the outer contour, so we added 
inverted left ear MEC case data when training the right ear pathological 
classifier. We also used the same operation when training the right ear 
classifier after transfer learning. Fig. 2 shows the similarity of the left 
and right ME structures. 

3.2. Overview of the framework 

To realize the automatic output of pathological results from CT im-
ages, we designed two different networks to form a series structure to 
solve problems: region of interest (ROI) search net and classification net 
(C-Net). Fig. 3 presents the complete technological process and some 
details about ROIs and the middle ear structure identification classifier 
(MESIC). 

3.3. Region of interest (ROI) search net 

With the help of the mask region-based convolutional neural 
network (Mask R-CNN) (He et al., 2018), we realized automatic 
searching of the bounding box, which is the box where we search and cut 
the middle ear structure diagram. As Fig. 3 shows, the ROI part gives a 
clear structure of our method. The gray block is the region proposal 
network (RPN) of the Mask R-CNN, which can help us to roughly 
determine the middle ear structure. ROI-Align uses bilinear interpola-
tion to overcome the misalignment problem that exists in the Faster R- 
CNN. In this way, we can obtain a fixed size (which depends on the 
training tags that we are preparing) feature map to produce the correct 

Fig. 1. Image preprocessing. Several preprocessing examples. Through expert tagging, we created training tags, indicated by the red box, for the ROI network. The 
white/gray pixel area is the true structure of the ME, which contains the characteristics of diseases. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 

Fig. 2. Flip examples. Three 3 kinds of ME images from different sides. All 
examples show their differences. 
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bounding box. 
As Fig. 4 shows, we chose 5 special ME images to represent all 

structures of the ME. The chosed 5 ME images generates representative 
feature maps containing the region of the ME (as shown in Fig. 4). The 
selection of 1st image and 5th image consists of superior semicircular 
canal and the floor of external acoustic meatus respectively, and illus-
trated the upper and lower boundary markers of middle ear stucture. 
The 3rd image contains horizontal semicircular canal and internal 

auditory canal, which are two landmark structure. The 2nd image and 
4th image locates the upper tympanum and the mastoid respectively, 
both of which are main parts of ME. In temporal bone CT scans, these 
structures demonstrate significant features that can be effectively 
learned by a deep learning model. 

Because of the importance of the horizontal semicircular canal 
(HSC), the way that we extracted the special image was to use the HSC 
middle ear image as an anchor point, and we defined the ROI network to 

Fig. 3. An overview of the MESIC. The upper part of the figure shows the overall judgment process of the MESIC. After all CT layers are input, they will go through 
two networks and an automatic processing process, and finally the binaural results of the patient will be output. The lower part of the figure shows the detailed 
network structure corresponding to the upper part, which is the image extraction network constructed by the ROI method in the mask region-based convolutional 
neural network (MASK R-CNN) and the classification network with Visual Geometry Group 16 (VGG-16) as the backbone. 

Fig. 4. The example of five Representative CT images (Left ear). ①Superior semicircular canal;②Upper tympanum;③Internal auditory canal;④Horizontal semi-
circular canal; ⑤ Mastoid;⑥ External acoustic meatus. 
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distinguish k pictures (k < N). We used k to obtain the step size, which 
was used with the anchor point to locate the 5 special images. The step 
size was defined by equation (1): 

stepsize =

[
k
5

]

(1) 

where [ ] is an integer operation. 

3.4. Classification net (C-Net) 

For the extracted special ME images, we used the designed CNN 
backbone and restructured the final full convolution layer to complete 
our classification task. In the experimental phase, we used different 
network backbones to find the one that best suited our model. After 
experiments, we ultimately selected Visual Geometry Group 16 (VGG- 
16) (Simonyan et al., 2014) as the main structure of the classification 
network. 

As shown in Fig. 3, the MESIC provides the network structure dia-
gram. First, to properly apply the VGG-16 backbone, we adjusted the 
size of the input image from 100X100 to 256 × 256. Then, we obtained 
an 8 × 8 × 512 feature block through a series of convolution and pooling 
operations of some columns on the backbone network. 

Although there was still some noise in the final selected class image, 
we applied the attention mechanism (Fu et al., 2019) in the final full 
convolution stage. As demonstrated in Fig. 5, given a input X ∈ RH×W×C, 
we generate three new feature maps A, B and C, respectively. Then we 
reshape them to RN×C, where N = H × W is number of features. The 
resulting output S ∈ RH×W×C calculates as follows: 

Sj = α
∑N

i=1

(
exp
(
Bi⋅Cj

)

∑N
i=1exp

(
Bi⋅Cj

)Ai

)

+Xj (2) 

Where ⋅ perform a matrix multiplication between the transpose of B 
and C, α as a scale parameter is initialized as 0 and gradually learn 
weight. The obtained feature S at each position is a weighted sum of the 
features at all positions and original features. By considering P as the 
attention operator and R as the reshape operator, the above equation 
changes to the form: 

S = P(X)R(X)+X (3) 

We first reconstructed the 8 × 8 feature map to a 64-dimensional 
vector and then applied the attention block to the reconstructed vec-
tor. We then restored the attention-processed vectors through the 
reverse process of remolding to 8 × 8 and sent them to the full convo-
lution layer to extract depth features and complete the classification 
task. 

In the final full convolution layer, the corresponding disease prob-
ability of a given image was output according to the following calcula-

tion formula: 

pc =
∑

k
wc

k

∑

i,j
yk(i, j) (4) 

Where yk(i, j) represent the activation of filter unit k in the last 
convolutional layer at position (i, j). 

∑
i,jyk(i, j) is the result of global 

average pooling. wc
k is the weight and correspondes the class c for filter 

unit k. We set the given image bias to 0 as it has little to no influence on 
the classification task. Finally pc of the softmax is given by exp(pc)∑

c
exp(pc)

. 

For the probability of the final output of the five feature maps, we 
adopted the medical concept of not missing the diagnosis even if the 
diagnosis was wrong. In the five special ME images, we used the concept 
of veto power; that is, if one was judged to be MEC or CSOM, the 
framework would definite diagnosis of this patient according to the 
corresponding disease even if the other four ME images were diagnosed 
as normal. 

4. Experiment and results 

In this section, we will describe all aspects of the experiment, 
including the Evaluation Metrics, training process, definition of the loss 
function and final experimental results. 

4.1. Evaluation Metrics and network training process 

Similar to many rapid diagnostic frameworks based on deep learning 
(Dutt et al., 2019), we used three metrics, precision, recall, and F1-score, 
to measure our final diagnostic effectiveness. 

In the process of constructing the network, the most important 
consideration was the training of the two main networks. We used 
transfer learning to simplify the training of similarity classification 
networks on both sides. By fine-tuning the network, the two similar 
networks shared the same architecture but with different parameters. 
This approach could reduce the quantity of data needed to achieve a 
certain precision in the training process and effectively improve the 
accuracy of training. As mentioned above, we chose to train the right 
ear-related network first and then use the learned structure to carry out 
transfer learning to finish training the left ear-related network. 

During model training, the dataset was randomly divided into a 
training set, verification set and test set at proportions of 70%, 20% and 
10%, respectively. In the random partition process, we retained the 
corresponding proportions of the three different diseases and rounded 
them down to ensure that the framework did not conduct “bias” learning 
after the partition. Fig. 4 shows our use of separate datasets and the 
whole process of the experiment. 

Fig. 5. The details of spatial attention mechanism.  
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4.2. Loss function 

According to the requirements of different stages in the training 
process, we used different loss functions in different stages after 
adjustment. In the searching ROI phase, because our goal related to the 
image segmentation task and the dataset was imbalanced, we chose the 
“dice coefficient” (dice-coef) (Priyadarshini et al., 2018) as the loss 
function. 

In the classification network, we used adaptive moment estimation 
(Adam) (Kingma et al., 2014) as the optimizer of the training classifier. 
The main idea of the algorithm is to calculate the update step size of the 
parameters by considering the first and second moments of the gradient. 
In the intermediate process of convolution, we used the rectified linear 
unit (ReLU) (Wang et al., 2016) activation function to add the nonlinear 
fitting function. In the final fine-tuning full convolution layer, we chose 
the common SoftMax (Grave et al., 2016) to strengthen our final selec-
tion probability. Its formula is as follows: 

Loss = −
∑outputsize

i=1
yi⋅logŷi (5) 

Where ŷi is the output value, and yi is the ground truth value. 

4.3. MESIC results 

We used the part of Mask R-CNN method to build our network and 
search for an ROI presenting highly accurate results. Fig. 6 shows the 
corresponding ROC curves. This figure shows almost no difference be-
tween the ME structure automatically extracted from the network and 
the manually marked image, which proves the feasibility of our con-
struction method and lays a good foundation for the classification of the 
following network. 

Based on previous work, the MESIC exhibits a good classification 
effect. Table 2 reports the related results. The paper by Wang (Wang & Li 
et al., 2019) concluded that Inception-V3 (Szegedy et al., 2016) can 
effectively solve ME problems based on CT images. Therefore, we per-
formed the network model from their study and VGG-16 for 5-fold cross 
validation experiments. From the results, CNNs with the VGG-16 back-
bone showed better results in the both sides classification task. There-
fore, we chose VGG-16 as the preferred backbone of our structure based 
on the results because it presented a balanced and successful result on 
both sides of the classification. 

Fig. 7 presents the confusion matrix of the classification results. The 
classification accuracy was higher for MEC and CSOM cases than normal 
cases, which is mainly due to the following three reasons. First, due to 
the uneven distribution of the datasets, some details of normal and mild 

CSOM cases also could not be learned. Second, the MEC image feature is 
obvious and could be effectively learned by computers. Third, based on 
the bottom line of no missed diagnosis in medicine, we set up a biased 
mechanism in the classification process, which led to low precision for 
normal cases. 

In the training stage, we used transfer learning from the right ear net 
to the left ear net in two main parts, enabling the left ear correlation 
network to achieve better classification robustness in the training pro-
cess with reduced data requirements. In other words, the network for the 
left ear is more robust than that for the right ear. We can see from the 
confusion matrix that the classification effect of the left ear network was 
more balanced and more accurate than that of the right ear. 

Fig. 8 shows the receiver operating characteristic (ROC) curve results 
for all classification tasks. The area under the ROC curve (AUC) mea-
sures the robustness of the algorithm for a certain classification problem. 
From the results, we can see that the MEC task classification exhibited 
the best robustness regarding the MESIC, and it also exhibited good 
robustness in the other two classification problems. The ROC curve re-
sults prove that our framework has good generalizability for this prob-
lem. (See Fig. 9). 

5. Discussion 

This paper presents a framework to detect MEC and CSOM from CT 
images with improved accuracy. In the framework, we combined the 
part of MASK R-CNN to realize an intelligent search for the middle ear 
structure, increasing the accuracy of the algorithm for pathological 
recognition. By contrast experiments, we reconstructed a CNN classfier 
with VGG-16 as the backbone and applied the attention mechanism to 
make our method robust. Through experiments, we determined that the 

Fig. 6. Experimental process. We divided the dataset into three parts for different steps in the experiment.  

Table 2 
Backbone comparison on the test set.  

Sides Backbone Mean Metrics 

Pre 
(%) 

Rec 
(%) 

F1 
(%) 

Sen 
(%) 

Spe 
(%) 

p- 
value 

Left Wang & Li 
et al., 2019 

83.8 
± 1.3 

84.7 
± 1.4 

82.6 
± 1.2 

88.6 
± 0.1 

91.2 
± 3.1 

3.1e- 
26 

Right Wang & Li 
et al., 2019 

89.6 
± 0.9 

82.2 
± 1.2 

86.0 
± 0.9 

87.1 
± 0.2 

90.2 
± 3.6 

8.4e- 
25 

Left Ours 90.5 
± 0.3 

87.9 
± 0.3 

89.7 
± 0.3 

90.7 
± 0.1 

94.5 
± 1.5 

7.6e- 
29 

Right Ours 93.8 
± 0.3 

95.1 
± 0.3 

94.4 
± 0.3 

96.7 
± 0.1 

97.6 
± 0.8 

1.7e- 
46 

Pre: precision; Rec: recall; F1: F1-score; Sen: Sensitivity; Spe: Specificity; p-value of 
Pearson correlation coefficient. 
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average accuracy of MESIC was 90.2%, the average recall rate was 
85.4%, and the average F1-score was 87.3%. In terms of performance, 
the average AUC for the classification of MEC, CSOM, and normal cases 
was 0.985, 0.950, and 0.935, respectively. The results show that our 

framework can effectively and quickly classify CT numbers (CTNs) 
through CT images, which can overcome the fatigue of professional 
doctors and the practical problems of a shortage of professional doctors 
in rural areas. 

Fig. 7. ROC curve of the network results in the first part of the framework. The results demonstrate that the extraction of the ROI area has high accuracy.  

Fig. 8. Confusion matrixes of different classification results. The higher the percentage of test samples for classification is, the darker the color of the corresponding 
blocks. The diagonal line of blocks indicates cases of correct classification. 
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The framework is helpful in otolaryngology for daily diagnosis and 
relief of sitting pressure, but it has some limitations. First of all, this 
framework is based on the representative CT scan level for diagnosis, 
which means that when the patient’s disease is in the early stage, the 
lesion images of CSOM and MEC may not exist at the representative 
level, which may lead to missed diagnosis. Secondly, because CT images 
scan the patient from top to bottom, there is natural continuity, and the 
information between these images is not taken into account in this 
framework. Finally, during routine medical visits, the image data that 
patients receive is usually physically printed rather than electronic 
(which can only be transmitted through personal accounts on the 
healthcare platform). Therefore, the framework is more suitable for 
comprehensive inspection using local detection instruments and dis-
playing diagnostic reference results in printed data. 

In future research, on the premise of improving the accuracy of the 
algorithm, we envisage using the upper and lower relationship between 
each layer of CT images to allow more ME images to enter the classifier 
and return the number of image layers corresponding to the disease. This 
hypothesized approach could help doctors better find a patient’s lesions 
to provide a good recommendation for preoperative planning. At the 
same time, with the popularization of smart phones and the develop-
ment of the network, the online consultation platform can be linked with 
the cloud digital hospital deployed in the framework to realize the effect 

of independent intelligent diagnosis for individual patients. This pros-
pect also puts more stringent requirements on the speed of the frame-
work diagnosis and the lightness of the network volume, which is the 
direction of improvement in the future work of the framework. 
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disease using CNN-based segmentation. Scientific Reports., 10. https://doi.org/ 
10.1038/s41598-020-63887-8 

Viscaíno, Michelle & Maass, Juan & Delano, Paul & Torrente, Mariela & Stott, Carlos & 
auat cheein, Fernando. (2020). Computer-aided diagnosis of external and middle ear 
conditions: A machine learning approach. PLOS ONE. 15. e0229226. 10.1371/ 
journal.pone.0229226. 

Quesnel, A. M., Ishai, R., & McKenna, M. J. (2018 Apr). Otosclerosis: Temporal Bone 
Pathology. Otolaryngol Clin North Am., 51(2), 291–303. https://doi.org/10.1016/j. 
otc.2017.11.001 

Fujima, N., Shimizu, Y., Yoshida, D., Kano, S., Mizumachi, T., Homma, A., … Shirato, H. 
(2019). Machine-Learning-Based Prediction of Treatment Outcomes Using MR 
Imaging-Derived Quantitative Tumor Information in Patients with Sinonasal 
Squamous Cell Carcinomas: A Preliminary Study. Cancers., 11, 800. https://doi.org/ 
10.3390/cancers11060800 

Tan, W., Guan, P., Wu, L., Chen, H., Li, J., Ling, Y., … Yan, B. (2021 Jun). The use of 
explainable artificial intelligence to explore types of fenestral otosclerosis 
misdiagnosed when using temporal bone high-resolution computed tomography. 
Ann Transl Med., 9(12), 969. https://doi.org/10.21037/atm-21-1171 

Yao, X., Sun, K., Bu, X., Zhao, C., & Jin, Y. (2021 Dec). Classification of white blood cells 
using weighted optimized deformable convolutional neural networks. Artificial Cells, 
Nanomedicine, and Biotechnology, 49(1), 147–155. https://doi.org/10.1080/ 
21691401.2021.1879823 

Nikan, S., Van Osch, K., Bartling, M., Allen, D. G., Rohani, S. A., Connors, B., … 
Ladak, H. M. (2021). PWD-3DNet: A Deep Learning-Based Fully-Automated 
Segmentation of Multiple Structures on Temporal Bone CT Scans. IEEE Transactions 
on Image Processing, 30, 739–753. https://doi.org/10.1109/TIP.2020.3038363 

Li, X., Gong, Z., Yin, H., Zhang, H., Wang, Z., & Zhuo, L. (2020). A 3D deep supervised 
densely network for small organs of human temporal bone segmentation in CT 
images. Neural Netw., 124, 75–85. https://doi.org/10.1016/j.neunet.2020.01.005 

Vaidyanathan, A., van der Lubbe, M. F. J. A., Leijenaar, R. T. H., van Hoof, M., Zerka, F., 
Miraglio, B., … Lambin, P. (2021). Deep learning for the fully automated 
segmentation of the inner ear on MRI. Scientific Reports, 11(1), 2885. https://doi. 
org/10.1038/s41598-021-82289-y 

He, Kaiming & Gkioxari, Georgia & Dollar, Piotr & Girshick, Ross. (2018). Mask R-CNN. 
IEEE Transactions on Pattern Analysis and Machine Intelligence. PP. 1-1. 10.1109/ 
TPAMI.2018.2844175. 

Simonyan, Karen & Zisserman, Andrew. (2014). Very Deep Convolutional Networks for 
Large-Scale Image Recognition. arXiv 1409.1556. 

Fu, Jun & Liu, Jing & Tian, Haijie & Li, Yong & Bao, Yongjun & Fang, Zhiwei & Lu, 
Hanqing. (2019). Dual Attention Network for Scene Segmentation. 3141-3149. 
10.1109/CVPR.2019.00326. 

Priyadarshini, Ishaani & Jha, Sudan & Kumar, Raghavendra & Smarandache, Florentin & 
son, le. (2018). Neutrosophic Image Segmentation with Dice Coefficients. 
Measurement. 

Kingma, Diederik & Ba, Jimmy. (2014). Adam: A Method for Stochastic Optimization. 
International Conference on Learning Representations. 

Wang, Pu., Ruiquan, G.e., Xuan, X., Cai, Y., Wang, G., & Zhou, F. (2016). Rectified- 
Linear-Unit-Based Deep Learning for Biomedical Multi-label Data. Interdisciplinary 
Sciences, Computational Life Sciences, 9. https://doi.org/10.1007/s12539-016-0196-1 
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